
Slony- I
A replication system for PostgreSQL

Implementation details

Jan Wieck

Afilias USA INC.
Horsham, Pennsylvania, USA

ABSTRACT

This document describes several implementation details of
the Slony-I replication engine and related components.

Slony-I -i- Wor king document

Table of Contents

1. Control data . 1
1.1. Table sl_node . 1
1.2. Table sl_path . 1
1.3. Table sl_listen . 2
1.4. Table sl_set . 2
1.5. Table sl_table . 2
1.6. Table sl_subscribe 2
1.7. Table sl_event . 2
1.8. Table sl_confirm 2
1.9. Table sl_setsync 3
1.10. Table sl_log_1 3
1.11. Table sl_log_2 3
2. Replication Engine Architecture 4
2.1. Sync Thread . 4
2.2. Cleanup Thread 4
2.3. Local Listen Thread 4
2.4. Remote Listen Threads 5
2.5. Remote Wor ker Threads 5

Slony-I -1- Wor king document

1. Contr ol data

Figure 1

sl_node

no_id PK

no_active

no_comment

sl_set

set_id PK

set_or igin

set_comment

sl_setsync

ssy_setid PK

ssy_or igin

ssy_seqno

ssy_minxid

ssy_maxxid

ssy_xip

ssy_action_list

sl_table

tab_id PK

tab_reloid

tab_set

tab_attkind

tab_comment

sl_path

pa_ser ver PK1

pa_client PK2

pa_conninfo

pa_connretr y

sl_listen

li_or igin PK1

li_provider PK2

li_receiver PK3

sl_subscribe

sub_set PK2

sub_provider

sub_receiver PK1

sub_forward

sub_active

sl_event

ev_or igin PK1

ev_seqno PK2

ev_timestamp

ev_minxid

ev_maxxid

ev_xip

ev_type

ev_data1

ev_data2

ev_data3

ev_data4

ev_data5

ev_data6

ev_data7

ev_data8

sl_confirm

con_or igin

con_received

con_seqno

con_timestamp

sl_log_[1|2]

sl_or igin

sl_xid

sl_tableid

sl_actionseq

sl_cmdtype

sl_cmddata

Figure 1 shows the Entity Relationship Diagram of the Slony-I configuration
and runtime data. Although Slony-I is a master slave replication technology, the
nodes building a cluster do not have any par ticular role. All nodes contain the
same configuration data and are running the same replication engine process. At
any given time, a collection of tables, called set, has one node as its origin. The
or igin of a table is the only node that permits updates by regular client applica-
tions. The fact that all nodes are functionally identical and share the entire config-
uration data makes failover and failback a lot easier. All the objects are kept in a
separate namespace based on the cluster name.

1.1. Table sl_node

Lists all nodes that belong to the cluster. The attribute no_active is NOT
intended for any shor t ter m enable/disable games with the node in question. The
transition from disable to enable of a node requires full synchronization with the
cluster, resulting possibly in a full set copy operation.

1.2. Table sl_path

Defines the connection infor mation that the pa_client node would use to
connect to pa_server node, and the retry inter val in seconds if the connection
attempt fails. Not all nodes need to be able to connect to each other. But it is
good practice to define all possible connections so that the configuration is in

Slony-I -2- Wor king document

place for an eventual failover. An sl_path entry alone does not actually cause a
connection to be established. This requires sl_listen and or sl_subscribe entries
as well.

1.3. Table sl_listen

Specifies that the li_receiver node will select and process events originating
on li_origin over the database connection to the node li_provider. In a nor mal
master slave scenar io with a classical hierarchy, events will travel along the same
paths as the replication data. But scenarios where multiple sets originate on dif-
ferent nodes can make it necessar y to distribute events more redundant.

1.4. Table sl_set

A set is a collection of tables and sequences that originate on one node
and is the smallest unit that can be subscribed to by any other node in the clus-
ter.

1.5. Table sl_table

Lists the tables and their set relationship. It also specifies the attribute kinds
of the table, used by the replication trigger to construct the update infor mation for
the log data.

1.6. Table sl_subscribe

Specifies what nodes are subscribed to what data sets and where they
actually get the log data from. A node can receive the data from the set origin or
any other node that is subscribed with forwarding (cascading).

1.7. Table sl_event

This is the message passing table. A node generating an event (configura-
tion change or data sync event) is inserting a new row into this table and does
Notify all other nodes listening for events. A remote node listening for events will
then select these records, change the local configuration or replicate data, store
the sl_event row in its own, local sl_event table and Notify there. This way, the
ev ent cascades through the whole cluster. For SYNC events, the columns
ev_minxid, ev_maxxid and ev_xip contain the transactions serializable snapshot
infor mation. This is the same infor mation used by MVCC in PostgreSQL, to tell if
a par ticular change is already visible to the transaction or considered to be in the
future. Data is replicated in Slony-I as single operations on the row lev el, but
grouped into one transaction containing all the changes that happened between
two SYNC events. Applying the last and the actual SYNC events transaction
infor mation according to the MVCC visibility rules is the filter mechanism that
does this grouping.

1.8. Table sl_confirm

Ever y ev ent processed by a node is confirmed in this table. The confirma-
tions cascade through the system similar to the events. The local cleanup thread

Slony-I -3- Wor king document

of the replication engine periodically condenses this infor mation and then
removes all entries in sl_event that have been confirmed by all nodes.

1.9. Table sl_setsync

This table tells for the actual node only what the current local sync situation
of every subscr ibed data set is. This status infor mation is not duplicated to other
nodes in the system. This infor mation is used for two pur poses. Dur ing replica-
tion the node uses the transaction snapshot to identify the log rows that have not
been visible during the last replication cycle. When a node does the initial data
copy of a newly subscribed to data set, it uses this infor mation to know and/or
remember what sync points and additional log data is already contained in this
actual data snapshot.

1.10. Table sl_log_1

The table containing the actual row lev el changes, logged by the replication
tr igger. The data is frequently removed by the cleanup thread after all nodes have
confir med the corresponding events.

1.11. Table sl_log_2

The system has the ability to switch between the sl_log_1 and this table.
Under normal circumstances it is better to keep the system using the same log
table, with the cleanup thread deleting old log infor mation and using vacuum to
add the free’d space to the freespace map. PostgreSQL can use multiple blocks
found in the freespace map to actually better parallelize inser t operations in high
concurrency. In the case nodes have been offline or fallen behind ver y far by
other means, log data collecting up in the table might have increased its size sig-
nificantly. There is no other way than running a full vacuum to reclaim the space
in such a case, but this would cause an exclusive table lock and effectively stop
the application. To avoid this, the system can be switched to the other log table in
this case, and after the old log table is logically empty, it can be truncated.

Slony-I -4- Wor king document

2. Replication Engine Ar ch itecture

Figure 2

Local
DB

Remote
DB

Sync Thread
SYNC

Cleanup Thread
CleanUp

Local Listen
Notify, Event

Confir m

Remote Listen
1 thread per

ev ent provider

Notify, Event

Remote Wor ker
1 thread per
remote node

Data

Confir mEvent, Data, Confirm

Event

Figure 2 illustrates the thread architecture of the Slony-I replication engine.
It is important to keep in mind that there is no predefined role for any of the nodes
in a Slony-I cluster. Thus, this engine is running once per database that is a
node of any cluster and all the engines together build "one distributed replication
system".

2.1. Sync Thread

The Sync Thread maintains one connection to the local database. In a
configurable interval it checks if the action sequence has been modified which
indicates that some replicable database activity has happened. It then generates
a SYNC event by calling CreateEvent(). There are no interactions with other
threads.

2.2. Cleanup Thread

The Cleanup Thread maintains one connection to the local database. In a
configurable interval it calls the Cleanup() stored procedure that will remove old
confir m, ev ent and log data. In another interval it vacuums the confirm, event and
log tables. There are no interactions with other threads.

2.3. Local Listen Thread

The Local Listen Thread maintains one connection to the local database. It
waits for "Event" notification and scans for events that originate at the local node.
When receiving new configuration events, caused by administrative programs
calling the stored procedures to change the cluster configuration, it will modify
the in-memory configuration of the replication engine accordingly.

Slony-I -5- Wor king document

2.4. Remote Listen Threads

There is one Remote Listen Thread per remote node, the local node
receives events from (event provider). Regardless of the number of nodes in the
cluster, a typical leaf node will only have one Remote Listen Thread since it
receives events from all origins through the same provider. A Remote Listen
Thread maintains one database connection to its event provider. Upon receiving
notifications for events or confirmations, it selects the new infor mation from the
respective tables and feeds them into the respective inter nal message queues for
the wor ker threads. The engine starts one remote node specific wor ker thread
(see below) per remote node. Messages are forwarded on an internal message
queue to this node specific wor ker for processing and confirmation.

2.5. Remote Worker Threads

There is one Remote Wor ker Thread per remote node. A remote wor ker
thread maintains one local database connection to do the actual replication data
application, the event storing and confirmation. Ever y Set originating on the
remote node the wor ker is handling, has one data provider (which can but must
not be identical to the event provider). Per distinct data provider over these sets,
the wor ker thread maintains one database connection to perfor m the actual repli-
cation data selection. A remote wor ker thread waits on its internal message
queue for events forwarded by the remote listen thread(s). It then processes
these events, including data selection and application, and confirmation. This
also includes maintaining the engines in- memory configuration infor mation.

